Pattern and Flow in the Everglades:
Defining Landscape-scale Hydraulic Geometry
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Everglades and the Ridge and Slough (RS)
Landscape

* Historically elongated, irregular patches of saw-grass and
submerged aquatic vegetation

e Strong similarity between original flow direction and ridge-slough
alignment (SCT 2003)
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Loss of Ridge-Slough Patterning

e After compartmentalization of the Everglades

* Modification of flow regimes

* Loss of RS patterns: negative ecological effects
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Plate 3a. Hydrology of the Everglades: Predrainage surface water flows, ca. 1850s. Arrow size and color reflects
flow magnitude. Selected postdrainage levees and roads shown for orientation. Source: Natural System Re-
gional Simulation Model v3.3 (Said and Brown 2010). Model developed by the Hydrologic and Ecosystems
Simulation Modeling Department, South Florida Water Management District.

Hydrology of the Everglades: Current surface water flows, 2010. Arrow size and color reflects flow mag-

ame scale as plate 3a). Source: Glades-LECSA Model (Senarath et al. 2008, 2010; see also Lal et al. 2005;
orida Water Management District 2006). Model developed by the Hydrologic and Ecosystems Simula-
leling Department, South Florida Water Management District.

Degraded RS landscape




Explanations of the RS Pattern
Development :Hypotheses

Sediment redistribution (Larsen et al., 2007; Larsen and Harvey, 2010,
2011)

Subsurface nutrient redistribution (Ross et al., 2006; Cheng et al., 2011)

Reciprocal feedbacks among hydrology, vegetation, and

landscape geometry: The “Self-Organizing Canal” Hypothesis (Cohen
etal., 2011)

nnnnnnnn nutricnt nutricnt La rsen et aI 2011
Cheng et al., 2010



The Self-Organizing Canal (SOC) Hypothesis

RS patterning arises from coupled interactions among vegetation,
hydrology, and the landscape hydraulic geometry

. High Hydroperiod =
Reduces discharge landscape
competence

—) | 0NN e
favorable for ridges

More sloughs
are formed

More ridges
are formed

Low Hydroperiod =
landscape conditions
less favorable for Increases

sloughs discharge
competence




Landscape Hydraulic Geometry

* Hydraulic geometry relationships:
relate various channel attributes and
discharge (Q) e.g.,

Chennel Width(w) = aQ?;
Flow depth(d) = cQ%;
Velocity(v) = eQ/;

Landscape hydraulic geometry relationship
is at the core of SOC hypothesis

Can we establish a hydraulic geometry
relationship between landscape attributes and
discharge competence (q) for the ridge-slough
landscape ?



Key attributes that directly affect the landscape
discharge competence (q)
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Landscape Hydraulic Geometry
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Landscape discharge competence (or flow) is difficult to measure

 Water level data is more easily measured and available for several
sites in the Everglades

surface water level — Hydroperiod (HP)

A more suitable form of relationship
HP = f(e,R)



Methods: Modeling Discharge Competence

Representative RS
Landscape site close
to water level
measurement
location
R=54%;e=4.5

4km

SWIFT2D
(USGS, 2004)
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Methods: Modeling Landscape Hydroperiods

* Simulated Landscapes of 5 %R ; 4 anisotropy classes

e R=35%,42.5%,50%,57.5%,65%:e=1,6,4,?2

 SWIFT 2D (USGS, 2004) A 2D finite difference model was used to develop
rating curves for the synthetic domains
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Modeled Hydroperiod: Effect of
Anisotropy(e)

* High anisotropy means more slough
conductivity = less HP

* A power function seems to fit for
the most %F except 65% and 90%R

* If %R is very high, even a highly
anisotropic patterning won’t have
many slough connections.
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Modeled Hydroperiod: Effect of Patch
Prevalence (R)
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* More complex, non-linear relationship between hydroperiod
and ridge-prevalence than anisotropy

* No definitive relationship seems to hold for patch-prevalence



Modeled Hydroperiod: combining effects of
eand R

HP z=a+bx+cy+dx2+ey2+ixy+gx3+hy3+ixy2+jx2y
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* Power law hydraulic geometry relationship between the ratio
e/R and HP seems to hold reasonably well

* More complex relationships may also be defined



Back to Self organizing Canal Hypothesis
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Stable Ridge-Slough
Patterning

Is SOC alone enough to explain the ridge-slough landscape
development in the Everglades?



A Stochastic Cellular Automata model of Ridge-
Slough Pattern Development
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HP = f(e, R) Local positive
Polynomia A feedback):
o)1/ 0 .
surface = neighborhood
effect
AP (anisotropic)
v X
Global negative Transition Probabilities
Feedback (inhibition \ between Ridge and Slough
patch)

Time = t+1
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* Simulated landscapes
have prevalence and
anisotropy within the
observed ranges in real
landscapes

e Aperiodic geometry of
the patches

e Patch size distribution

semivariance
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